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Use of the variable metric methods is discussed in their application to geometry optimizations 
by ab initio SCF calculations. The presented model calculations on H 20 2 and Ht were performed 
by the program POLYGRAD which involves analytical differentiation of integrals over basis 
set functions. 

Since the introduction of variable metric methods to quantum chemistry 1 
,2 optimum 

geometries may be calculated at considerably lower cost than before. Recently 
we reported3 on the use and efficiency of the variable metric methods in geometry 
optimization by semiempirical all-valence electron methods. The present paper 
extends this study to ab initio SCF treatments. 

Special Features of ab initio Treatments 

Let us r:::call the fundamental formula for the family of variable metric methods 

(1) 

where ex is a scalar, Hi _ 1 is the Hessian matrix which results in the course of com
putation, and gi -1 is the energy gradient evaluated at Xi -1' By the subscripts i - 1 
and i we imply two successive iterations. The inherent constituent of the variable 
metric method is thus the energy gradient evaluation. Since in the MO-LCAO 
approach the total electronic energy may be expressed in terms of the density matrix 
and integrals over the basis set, the evaluation of the energy gradient becomes 
essentially equivalent to the differentiation of integrals. The application to semi
empirical all-valence electron methods is straightforward as the latter consider 
explicitly only overlap and one- and two-centre repulsion integrals for which the 
derivatives may be expressed analytically in simple closed forms4

• Since, in semi
empirical treatments, the calculation of the gradient is, considerably less time-con
suming than a single standard SCF calculation, it is profitable to use the so called 
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double iteration technique4 in which the SCF iteration procedure and the variable 
metric minimization are performed simultaneously in a single run. In this way, the 
complete geometry optimization requires about double the number of SCF itera
tions as are necessary in the standard SCF calculation. With ab initio calculations 
the situation is different. The formula for the derivative of energyl ,5,6 is more com
plex and it contains the terms with derivatives of overlap, kinetic energy, nuclear 
attraction, and two, three, and four-centre electronic repulsion integrals. The dif
ferentiation of these integrals over Slater-type or Gaussian basis is a difficult task. 
The simplest conceivable way to do it is to differentiate the integrals numerically, i.e., 
to approximate the derivatives by means of the expression 

(2) 

where e j is a vector with its i-th component unity and its other components zero 
and dj a chosen step size. The efficiency of this approach was tested by Poppinger 7 , 

who employed Murtagh and Sargent's8 version of the variable metric method. The 
gradient method was found to be faster and more reliable than the direct search 
procedure in which the energy was minimized iteratively with respect to each internal 
coordinate. The gain in the computation time was 20- 50% for H:, HNCO and CH; 
calculated with the STO-3G basis set by means of the program Gaussian 70. 

Use of Eq. (2) for the gradient evaluation is disadvantageous in two respects. 
First, the gradient is determined the more accurately, the lower is d j • Computationally, 
however, the difference in the numerator becomes smaller and its value will be af
fected more by the numerical errors. Second, the calculation of the gradient for a mole
cule with n coordinates requires 2n calculations of the molecular energy. Although 
some computer time may be saved by recalculating only those integrals that involve 
basis functions of the atom shifted (by dje j) and by starting the SCF procedure 
at the point x + dje j with the density matrix formed at x, the cost of the gradient 
computation in the analytical form is considerably lower. 

Analytical differentiation of integrals is involved in the program of Pulay9 which 
makes use of the Gaussian lobe functions. In that case the calculation of the energy 
gradient is relatively easy because of a simple differentiation of integrals over the 
basis set s-type functions. Analytical differentiation of integrals is also involved 
in the program of SchlegeJ1° which is adapted, as is the Gaussian 70 program, to 
basis sets that have common Gaussian exponents shared between contracted s 
and p functions. As reported by Schlegel and coworkersll the calculation of the 
energy gradient requires approximately the same amount of computer time as the 
complete SCF calculation. With the program of Pulay, the factor isl2 about 2. 
Another program based on the Gaussian 70 system was reported recently by Komor
nicki and coworkersl3 . With this program the factor is about 3·5. Previously 
we reported14 on our own program POLYGRAD, which is based on the POLY-
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ATOM/l program. Compared to the cited programs, POLYGRAD is less effective 
since the computation of the energy gradient lasts about six times longer than the 
complete SCF calculation. However it accommodates sp Gaussian basis sets without 
any restriction and makes use of the molecular symmetry as efficiently as POLY
ATOM/l. The utility of the POLYGRAD program may be judged from the results 
presented in the following Section. 

Model Calculations on H 20 2 and Ht 
Except for the double iteration technique, the details of the calculations are the same 
as given previously3. For the constants p and e we adopted the values of 0·2 and 0·5, 
respectively. * The other constants used in the variable metric method were not 
changed3. 

TABLE I 

Geometry Optimization of Hydrogen Peroxidea 

Variable Dihedral Norm of 
metric ROH Roo -1: HOO angle E gradient 

iteration 

1·795 2·787 94·8 111·5 -141·439326 0'3089 
1-801 2'574 99·3 110·8 - 141-481866 0'2353 

3 1·834 2'306 105'5 108·9 - 141'509083 0'1103 
4 1·849 2·310 106·7 106·7 - 141'514002 0·0929 

5 1·915 2·262 112-4 97-4 - 141'527146 0·0835 

6 1·985 2'268 116'8 86·8 - 141'534097 0·0239 

2·005 2-265 117-9 83 ·2 - 141·534543 0·0206 
2·002 2·266 J 17·8 82·7 - 141 '534749 0·0196 

1·966 2·273 115·9 72-9 - 141'536715 0·0077 

10 1·965 2·273 115·9 72-6 -141 ' 536719 0'0073 

11 1·948 2·276 116·9 69'4 - 141'536750 0'0075 

12 1·954 2'277 116'5 70'4 - 141 ·536793 0·0022 

a Energy and bond distances are expressed as relative dimensionless quantities, E/eo and R/ao, 
where eo = 2625·5 kJ mol- 1 and ao = 0'52917 . 10 - 10 m, the norm of gradient is also treated 
as a dimensionless quantity, tJ.g ao /eo; angles are in degrees. 

The constants are expressed in the so called "atomic units". To agree with the International 
System of Units we give them the meaning of dimensionless quantities. See also footnote a in 

Table I. 
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The geometry optimization of hydrogen peroxide was performed with the minimal 
uncontracted (3s1pI1s) basis setlS, the exponent of the hydrogen functions beingl6 
0·28294. The calculation was performed in the Cartesian system of 12 coordinates 
and the experimental geometry17 was used as a starting point. The course of the 
optimization is shown in Table 1. The Hessian matrix was reset in the 7th iteration. 
It is seen that energy decreases monotonously. Also the norm of the gradient de
creases steadily (except in the 11th iteration) in contrast to the norm of coordinate 
changes which varies completely irregularly. In the beginning of the iteration proce
dure, the most varied parameters are bond lengths whereas towards the end of the 
iteration procedure the optimization concerns mainly the bond and dihedral angles. 
The final geometry is in very poor agreement with experiment. This is not surprising 
for such a small basis set because an accurate description of the potential surface 
of H 20 2 requires a larger basis set with polarization f~nctionsl8. Here, however, 
it is profitable to see, how the variable metric method works in the case in which 
the final geometry is markedly different from the initial guess. This holds particularly 
for the dihedral angle because dihedral angles and torsional motions are the geo
metry parameters for which the variable metric method is not very effective. 

The second system treated was the Ht cluster in the e2v symmetry (Fig. 1). The 
basis set used was Dunning'sl9 scaled (4s)/[2s] basis set augmented with a single 
set of p-functions with the exponent of 0·9. For the starting geometry we used the 

TABLE II 

Geometry Optimization of Ht 

Geometry parametersa 

Norm of 
gradientb Iteration 

1st 
27th 
Step-by-step 
(265 steps) 

1·52 
1·5298 
1'5292 

0·83 
0·7793 
0·7795 

a See Fig. 1; b See footnote a in Table I. 

2·98 
2·8656 
2·8700 

0'7 
0 '7067 
0 '7066 

FIG. 1 

- 2·434270 0 '029076 
- 2·435323 0·00011 9 
-2-435323 

Geometry Parameters in Ht 
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optimum structure reported20 for a slightly larger basis set. To obtain the energy 
accurate to six decimal places it was necessary to perform 27 variable metric itera
tions. The Hessian matrix was 4 times reset. The norm of the gradient decreased 
by more than two orders. In Table II we present the geometry and energy para
meters at the beginning and at the end of the iteration procedure. Presented are 
also the data obtained with the step-by-step procedure combined with the least
-squares treatment which required 265 calculations21 to achieve this accuracy. 

REFERENCES 

1. McIver J . W., jr, Komornicki A.: Chem. Phys. Lett. 10, 303 (1971). 
2. Zeiss G . D ., Whitehead M. A.: J. Chem. Soc. A 1971, 1727. 
3. PancH' J.: This Journal 40, 2726 (1975). 
4. Pancif J .: TheoL Chim. Acta 29, 21 (1973). 
5. Moccia R.: TheoL Chim. Acta 8, 8 (1967). 
6. Pulay P.: Mol. Phys . 17, 197 (1969). 
7. Poppinger D .: Chem. Phys. Lett. 34, 332 (1975) . 
8. Murtagh B. A. , Sargent R. W. H .: Com put. J. 13, 185 (1970) . 
9. Pulay P. : Mol. Phys. 18,473 (1970). 

10. Schlegel H. B.: Thesis. Queen's University, Kingston, Ontario 1975. 
II. Schlegel H. B., Wolfe S., Bernardi F.: J. Chem. Phys. 63, 3632 (1975). 
12. Meyer W., Pulay P.: TheoL Chim. Acta 32, 253 (1974). 
13. Komornicki A., Ishida K. , Morokuma K. , Ditchfield R ., Conrad M .: Chem. Phys. Lett. 45, 

595 (1977). 
14. Huber H ., Carsky P., Zahradnik R .: TheoL Chim. Acta 41,217 (1976). 
15 . Csizmadia 1. G. , Harrison M. c., Moskowitz J. W., Sutcl iffe B. T. : Theor. Chim . Acta 6,191 

(1966). 
16. Reeves C. M .: J. Chem. Phys. 39, 1 (1963). 
17. Redington R. L., Olson W. B., Cross P. C.: J. Chem. Phys. 36,1311 (1962). 
18. Dunning T. H .,jr, Winter N. W.: J. Chem. Phys. 63,1 847 (1975). 
19. Dunning T. H ., jr: J . Chem. Phys . 53, 2823 (1970). 
20. Huang J. T. J ., Schwartz M. E., Pfeiffer G . V.: J . Chem. Phys . 56, 755 (1972). 
21. Slanina Z., Carsky P., Zahradnik R.: Unpublished results. 

Translated by the author (P. C.). 

Collection Czechoslov. Chern . Cornrnun. [Vol. 42] [1977] 




